
APRIORI
ALGORITHM

Motivation: Association Rule Mining

• Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction

Market-Basket transactions

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} {Beer},

{Milk, Bread} {Eggs,Coke},

{Beer, Bread} {Milk},

Applications: Association Rule Mining

• * Maintenance Agreement

– What the store should do to boost Maintenance

Agreement sales

• Home Electronics *

– What other products should the store stocks up?

• Attached mailing in direct marketing

• Detecting “ping-ponging” of patients

• Marketing and Sales Promotion

• Supermarket shelf management

Definition: Frequent Itemset
• Itemset

– A collection of one or more items

•Example: {Milk, Bread, Diaper}

– k-itemset

•An itemset that contains k items

• Support count ()

– Frequency of occurrence of an itemset

– E.g. ({Milk, Bread,Diaper}) = 2

• Support

– Fraction of transactions that contain an

itemset

– E.g. s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

– An itemset whose support is greater

than or equal to a minsup threshold

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Definition: Association Rule

Example:

Beer}Diaper,Milk{

4.0
5

2

|T|

)BeerDiaper,,Milk(

s

67.0
3

2

)Diaper,Milk(

)BeerDiaper,Milk,(

c

• Association Rule

– An implication expression of the form

X Y, where X and Y are itemsets

– Example:

{Milk, Diaper} {Beer}

• Rule Evaluation Metrics

– Support (s)

•Fraction of transactions that contain both

X and Y

– Confidence (c)

•Measures how often items in Y

appear in transactions that

contain X

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

Association Rule Mining Task

• Given a set of transactions T, the goal of
association rule mining is to find all rules having

– support ≥ minsup threshold

– confidence ≥ minconf threshold

• Brute-force approach:

– List all possible association rules

– Compute the support and confidence for each rule

– Prune rules that fail the minsup and minconf
thresholds

 Computationally prohibitive!

Computational Complexity

• Given d unique items:

– Total number of itemsets = 2d

– Total number of possible association rules:

123 1

1

1 1

dd

d

k

kd

j j

kd

k

d
R

If d=6, R = 602 rules

Mining Association Rules: Decoupling

Example of Rules:

{Milk,Diaper} {Beer} (s=0.4, c=0.67)

{Milk,Beer} {Diaper} (s=0.4, c=1.0)

{Diaper,Beer} {Milk} (s=0.4, c=0.67)

{Beer} {Milk,Diaper} (s=0.4, c=0.67)

{Diaper} {Milk,Beer} (s=0.4, c=0.5)

{Milk} {Diaper,Beer} (s=0.4, c=0.5)

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

 Observations:

• All the above rules are binary partitions of the same itemset:

{Milk, Diaper, Beer}

• Rules originating from the same itemset have identical support but

can have different confidence

• Thus, we may decouple the support and confidence requirements

Mining Association Rules

• Two-step approach:

1. Frequent Itemset Generation

– Generate all itemsets whose support minsup

2. Rule Generation

– Generate high confidence rules from each frequent itemset,

where each rule is a binary partitioning of a frequent itemset

• Frequent itemset generation is still

computationally expensive

Frequent Itemset Generation

• Brute-force approach:

– Each itemset in the lattice is a candidate frequent itemset

– Count the support of each candidate by scanning the

database

– Match each transaction against every candidate

– Complexity ~ O(NMw) => Expensive since M = 2d !!!

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions List of

Candidates

M

w

Reducing Number of Candidates: Apriori

• Apriori principle:

– If an itemset is frequent, then all of its subsets must also

be frequent

• Apriori principle holds due to the following property

of the support measure:

– Support of an itemset never exceeds the support of its

subsets

– This is known as the anti-monotone property of support

)()()(:, YsXsYXYX

Found to be

Infrequent

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Illustrating Apriori Principle

null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE

Pruned

supersets

Illustrating Apriori Principle

Item Count

Bread 4
Coke 2
Milk 4
Beer 3
Diaper 4
Eggs 1

Itemset Count

{Bread,Milk} 3
{Bread,Beer} 2
{Bread,Diaper} 3
{Milk,Beer} 2
{Milk,Diaper} 3
{Beer,Diaper} 3

Itemset Count

{Bread,Milk,Diaper} 3

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate
candidates involving Coke
or Eggs)

Triplets (3-itemsets)
Minimum Support = 3

If every subset is considered,
6C1 + 6C2 + 6C3 = 41
With support-based pruning,
6 + 6 + 1 = 13

Apriori: Reducing Number of Comparisons

• Candidate counting:

– Scan the database of transactions to determine the support of

each candidate itemset

– To reduce the number of comparisons, store the candidates in a

hash structure

• Instead of matching each transaction against every candidate, match

it against candidates contained in the hashed buckets

TID Items

1 Bread, Milk

2 Bread, Diaper, Beer, Eggs

3 Milk, Diaper, Beer, Coke

4 Bread, Milk, Diaper, Beer

5 Bread, Milk, Diaper, Coke

N

Transactions Hash Structure

k

Buckets

Apriori: Implementation Using Hash Tree

1,4,7

2,5,8

3,6,9

Hash function

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3

5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

You need:

• Hash function

• Max leaf size: max number of itemsets stored in a leaf node

(if number of candidate itemsets exceeds max leaf size, split the node)

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 5 91 5 9

1 4 51 4 5 1 3 61 3 6

3 4 53 4 5 3 6 7

3 6 8

3 6 73 6 7

3 6 83 6 8

3 5 6

3 5 7

6 8 9

3 5 6

3 5 7

3 5 63 5 6

3 5 73 5 7

6 8 96 8 9

2 3 4

5 6 7

2 3 42 3 4

5 6 75 6 7

1 2 4

4 5 7

1 2 41 2 4

4 5 74 5 7

1 2 5

4 5 8

1 2 51 2 5

4 5 84 5 8

Apriori: Implementation Using Hash Tree

1 5 9

1 4 5 1 3 6

3 4 5 3 6 7

3 6 8

3 5 6

3 5 7

6 8 9

2 3 4

5 6 7

1 2 4

4 5 7

1 2 5

4 5 8

1 2 3 5 6

3 5 61 2 +

5 61 3 +

61 5 +

3 5 62 +

5 63 +

1 + 2 3 5 6

transaction

Match transaction against 11 out of 15 candidates

REFERENCES :

• Fast algorithms for mining association rules in large databases

http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf
http://rakesh.agrawal-family.com/papers/vldb94apriori.pdf

