APRIORI ALGORITHM

Motivation: Association Rule Mining

- Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

Example of Association Rules

TID	Iters
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Applications: Association Rule Mining

- * \Rightarrow Maintenance Agreement
- What the store should do to boost Maintenance Agreement sales
- Home Electronics \Rightarrow *
- What other products should the store stocks up?
- Attached mailing in direct marketing
- Detecting "ping-ponging" of patients
- Marketing and Sales Promotion
- Supermarket shelf management

Definition: Frequent Itemset

- Itemset
- A collection of one or more items
-Example: \{Milk, Bread, Diaper\}
- k-itemset
-An itemset that contains k items
- Support count (σ)
- Frequency of occurrence of an itemset
- E.g. $\sigma(\{$ Milk, Bread,Diaper\}) $=2$
- Support
- Fraction of transactions that contain an itemset

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- E.g. s(\{Milk, Bread, Diaper\}) $=2 / 5$
- Frequent Itemset
- An itemset whose support is greater than or equal to a minsup threshold

Definition: Association Rule

- Association Rule
- An implication expression of the form $\mathrm{X} \rightarrow \mathrm{Y}$, where X and Y are itemsets
- Example:
$\{$ Milk, Diaper $\} \rightarrow\{$ Beer $\}$

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics
- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)
-Measures how often items in Y appear in transactions that contain X

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

Computational Complexity

- Given d unique items:
- Total number of itemsets = $2^{\text {d }}$
- Total number of possible association rules:

If $\mathbf{d = 6 , R} \mathbf{R} \mathbf{6 0 2}$ rules

Mining Association Rules: Decoupling

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Observations:

Example of Rules:

\{Milk,Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67) \{Milk,Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0) $\{$ Diaper,Beer\} $\rightarrow\{$ Milk\} (s=0.4, c=0.67) $\{$ Beer $\} \rightarrow$ \{Milk,Diaper\} (s=0.4, c=0.67) $\{$ Diaper $\} \rightarrow$ \{Milk,Beer\} (s=0.4, c=0.5) $\{$ Milk $\} \rightarrow$ \{Diaper,Beer\} (s=0.4, c=0.5)

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

- Brute-force approach:
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database

Transactions
List of

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Match each transaction against every candidate

Reducing Number of Candidates: Apriori

- Apriori principle:
- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

- Support of an itemset never exceeds the support of its subsets

Illustrating Apriori Principle

Found to be Infrequent

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum Support = 3

Iterset	Cant	Pairs (2-itemsets)
\{Bead, Mik\}	3	
\{BeadZzer\}	2	(No need to generate
\{Bead, Daper\}	3	dandidates involving Coke
\{NkEser\}	2	or Eggs)
\{Vik[laper\}	3	

Triplets (3-itemsets)

> If every subset is considered, ${ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}=41$ With support-based pruning, $6+6+1=13$

Itersid	Cont
\{Beadil iknaper\}	3

The Apriori Algorithm

C_{k} : Candidate itemset of size k
L_{k} : frequent itemset of size k
$L_{1}=\{$ frequent items $\} ;$
for ($k=1 ; L_{k}!=\varnothing ; k++$) do begin $C_{k+l}=$ candidates generated from L_{k}.
for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t $L_{k+1}=$ candidates in C_{k+1} with min_support end
return $\cup_{k} L_{k}$;

The Apriori Algorithm -- Example

$C_{3} |$| itemset |
| :---: | :---: | :---: | :---: |
| $\left\{\begin{array}{ll}2 & 3 \\ 5\end{array}\right\}$ |

Note: $(1,2,3)(1,2,5)$ and $\{1,3,5\}$ not in C_{3}

Apriori: Reducing Number of Comparisons

- Candidate counting:
- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
- Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions
Hash Structure

Apriori: Implementation Using Hash Tree

Suppose you have 15 candidate itemsets of length 3:
\{1 4 5\}, \{1 24$\},\{457\},\{12$ 5\}, \{4 5 8\}, \{1 5 9\}, \{1 3 6\}, \{2 34$\},\{567\},\{34$ 5\}, \{3 5 6\}, \{3 57 \}, \{6 8 9\}, \{3 67$\}$, \{3 6 8\}
You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node
(if number of candidate itemsets exceeds max leaf size, split the node)

Apriori: Implementation Using Hash Tree

REFERENCES:

- Fast algorithms for mining association rules in large databases

