APRIORI ALGORITHM

Motivation: Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 $\{Diaper\} \rightarrow \{Beer\},\$ $\{Milk, Bread\} \rightarrow \{Eggs, Coke\},\$ $\{Beer, Bread\} \rightarrow \{Milk\},\$

Applications: Association Rule Mining

- * ⇒ Maintenance Agreement
 - What the store should do to boost Maintenance Agreement sales
- Home Electronics \Rightarrow *
 - What other products should the store stocks up?
- Attached mailing in direct marketing
- Detecting "ping-ponging" of patients
- Marketing and Sales Promotion
- Supermarket shelf management

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - •Example: {Milk, Bread, Diaper}
- k-itemset
 - •An itemset that contains k items
- Support count (σ)
 - Frequency of occurrence of an itemset
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example: {Milk, Diaper} \rightarrow {Beer}
- Rule Evaluation Metrics
 - Support (s)

•Fraction of transactions that contain both X and Y

- Confidence (c)

•Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

Association Rule Mining Task

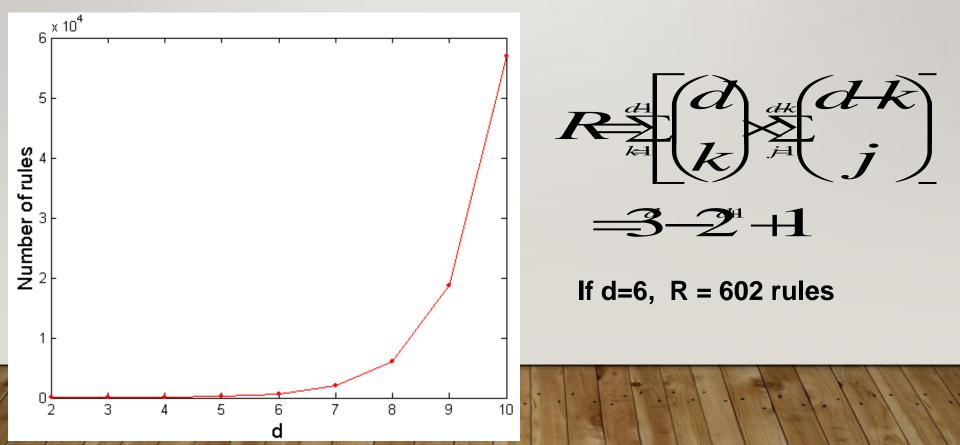
- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold

Brute-force approach:

- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the *minsup* and *minconf* thresholds
- ⇒ Computationally prohibitive!

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:



Mining Association Rules: Decoupling

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Observations:

Example of Rules:

 $\{ Milk, Diaper \} \rightarrow \{ Beer \} (s=0.4, c=0.67) \\ \{ Milk, Beer \} \rightarrow \{ Diaper \} (s=0.4, c=1.0) \\ \{ Diaper, Beer \} \rightarrow \{ Milk \} (s=0.4, c=0.67) \\ \{ Beer \} \rightarrow \{ Milk, Diaper \} (s=0.4, c=0.67) \\ \{ Diaper \} \rightarrow \{ Milk, Beer \} (s=0.4, c=0.5) \\ \{ Milk \} \rightarrow \{ Diaper, Beer \} (s=0.4, c=0.5)$

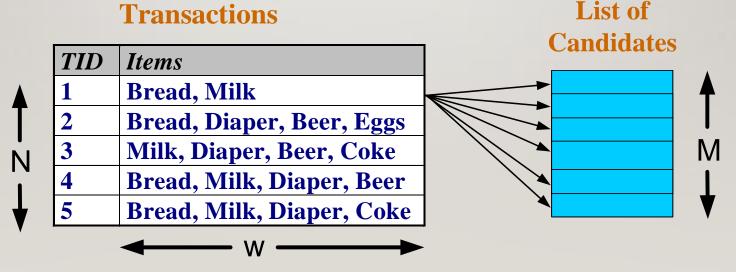
- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database



Match each transaction against every candidate

Complexity ~ O(NMw) => Expensive since M = 2

Reducing Number of Candidates: Apriori

• Apriori principle:

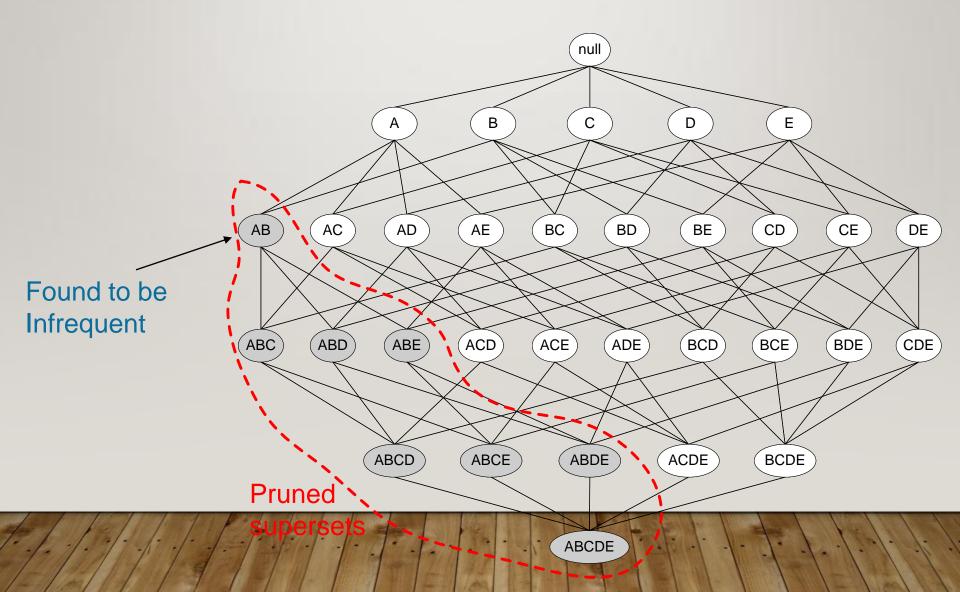
is is known as the

- If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

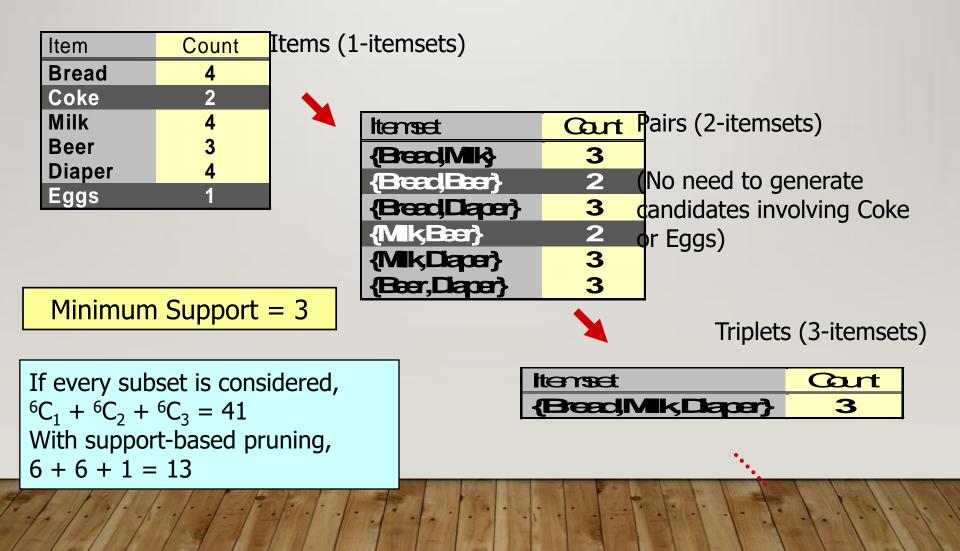
Support of an itemset never exceeds the support of its subsets

property of support

Illustrating Apriori Principle



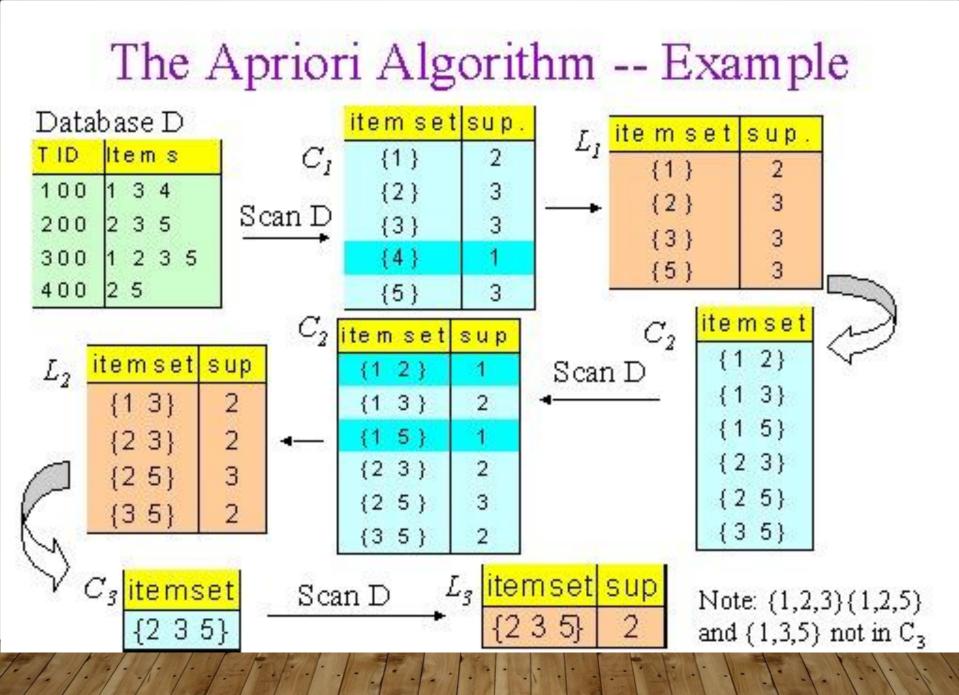
Illustrating Apriori Principle



The Apriori Algorithm

 C_k : Candidate itemset of size k L_k : frequent itemset of size k

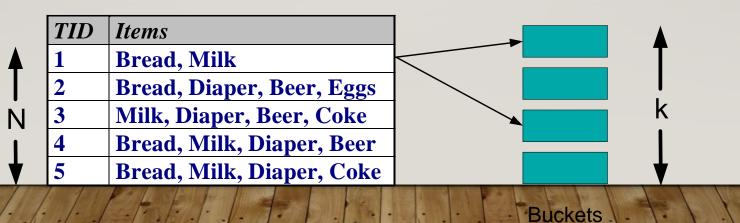
 $L_{I} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} != \emptyset; k ++) \text{ do begin} \\ C_{k+I} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{ increment the count of all candidates in } \\ C_{k+I} \text{ that are contained in } t \\ L_{k+I} = \text{candidates in } C_{k+I} \text{ with min_support } \\ \text{end} \\ \text{return } \cup_{k} L_{k}; \end{cases}$



Apriori: Reducing Number of Comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions



Apriori: Implementation Using Hash Tree

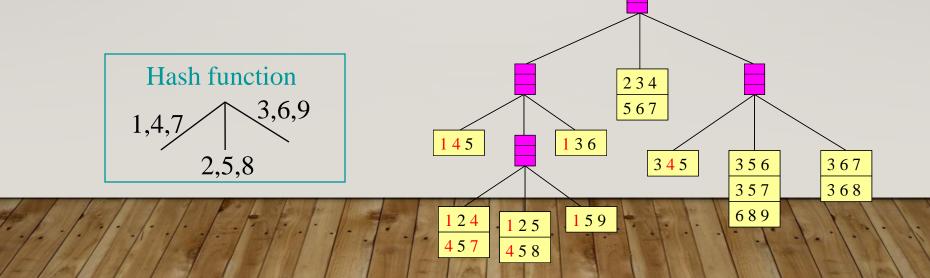
Suppose you have 15 candidate itemsets of length 3:

 $\{1\ 4\ 5\},\ \{1\ 2\ 4\},\ \{4\ 5\ 7\},\ \{1\ 2\ 5\},\ \{4\ 5\ 8\},\ \{1\ 5\ 9\},\ \{1\ 3\ 6\},\ \{2\ 3\ 4\},\ \{5\ 6\ 7\},\ \{3\ 4\ 5\},\ \{3\ 5\ 6\},\ \{3\ 5\ 7\},\ \{6\ 8\ 9\},\ \{3\ 6\ 7\},\ \{3\ 6\ 8\} \}$

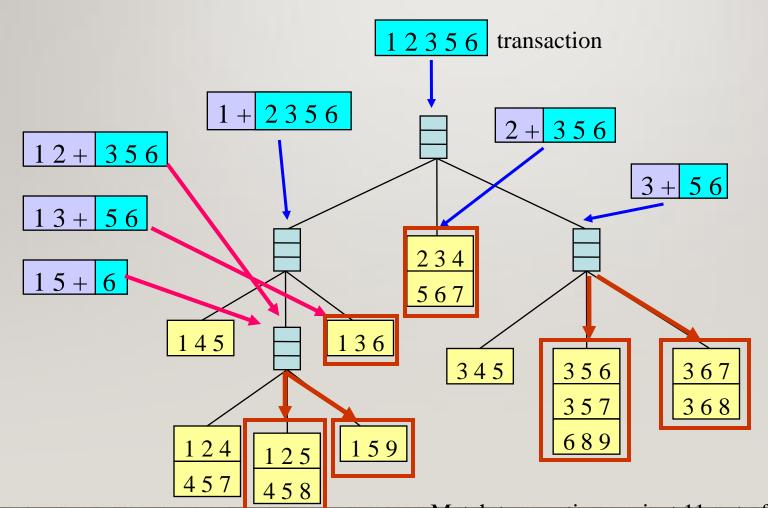
You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node

(if number of candidate itemsets exceeds max leaf size, split the node)



Apriori: Implementation Using Hash Tree



Match transaction against 11 out of 15 candidates

REFERENCES :

• Fast algorithms for mining association rules in large databases